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The authors suggest the use of D-efficient experimental designs for 
conjoint and discrete-choice studies, discussing orthogonal arrays, 
nonorthogonal designs, relative efficiency, and nonorthogonal design 
algorithms. They construct designs for a choice study with asymmetry and 
interactions and for a conjoint study with blocks and aggregate 

interactions. 

Efficient Experimental Design with Marketing 
Research Applications 

The design of experiments is a fundamental part of mar­
keting research. Experimental designs are required in wide­
ly used techniques, such as preference-based conjoint anal­
ysis and discrete-choice studies (e.g., Carmone and Green 
1981; Elrod, Louviere, and Davey 1992; Green and Wind 
1975; Huber et aI. 1993; Lazari and Anderson 1994; Lou­
viere 1991; Louviere and Woodworth 1983; Wittink and 
Cattin 1989). Ideally, marketing researchers prefer orthogo­
nal designs. When a linear model is fit with an orthogonal 
design, the parameter estimates are uncorrelated, which 
means each estimate is independent of the other terms in the 
model. More importantly, orthogonality usually implies that 
the ~oefficients will have minimum variance, though we dis­
cuss exceptions to this rule. For these reasons, orthogonal 
designs are usually quite good. However, for many practical 
problems, orthogonal designs are simply not available. In 
those situations, nonorthogonal designs must be used. 

Orthogonal designs are available for only a relatively 
small number of very specific problems. They may not be 
available when some combinations of factor levels are in­
feasible, a nonstandard number of runs (factor level combi­
nations or hypothetical products) is desired, or a nonstan­
dard model is being used, such as a model with interaction 
or polynomial effects. Consider the problem of designing a 
discrete choice study in which there are alternative specific 
factors, different numbers of levels within each factor, and 
interactions within each alternative. Orthogonal designs are 
not readily available for this situation, particularly when the 
number of runs must be limited. When an orthogonal design 
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is not available, an alternative must be chosen-the experi­
ment can be modified to fit some known orthogonal design, 
which is undesirable for obvious reasons, or a known design 
can be modified to fit the experiment, which may be difficult 
and inefficient. 

Our primary purpose is to explore a third alternative, the 
use of optimal (or nearly optimal) designs. Such designs are 
typically nonorthogonal; however, they are efficient in the 
sense that the variances and covariances of the parameter es­
timates are minimized. Furthermore, they are always avail­
able. even for nonstandard situations. Finding these designs 
usually requires the aid of a computer, but we want to em­
phasize that we are not advocating a black-box approach to 
designing experiments. Computerized design algorithms do 
not supplant traditional design-creation skills. Our examples 
show that our best designs were usually found when we used 
our human design skills to guide the computerized search. 

First, we summarize our main points; next, we review 
some fundamentals of the design of experiments; then we 
discuss computer-generated designs, a discrete-choice ex­
ample, and a conjoint analysis example. 

Summary ofMain Points 

Our goal is to explain the benefits of using computer-gen­
erated designs in marketing research. Our main points 
follow: 

1. The goodness of an experimental design (efficiency) can be 
quantified as a function of the variances and covariances of 
the parameter estimates. Efficiency increases as the variances 
decrease. Designs should not be thought of in terms of the di­
chotomy between orthogonal versus nonorthogonal but rather 
as varying along the continuous attribute of efficiency. Some 
orthogonal designs are less efficient than other (orthogonal 
and nonorthogonal) alternatives. 

2. Orthogonality is not the primary goal in design creation. It is 
a secondary goal, associated with the primary goal of mini­
mizing the variances of the parameter estimates. Degree of or­
thogonality is an important consideration, but other factors 
should not be ignored. 
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3. For complex, nonstandard situations, computerized searches 
provide the only practical method of design generation for all 
but the most sophisticated of human designers. These situa­
tions do not have to be avoided just because it is extremely 
difficult to generate a good design manually. 

4. The best approach to design creation is to use the computer as 
a tool along with traditional design skills, not as a substitute 
for thinking about the problem. 

Background and Assumptions 

We present an overview of the theory of efficient experi­
mental design, developed for the general linear model. This 
topic is well known to specialists in statistical experimenta­
tion, though it is not typically taught in design classes. Then 
we suggest ways in which this theory can be applied to mar­
keting research problems. 

Certain assumptions must be made before applying ordi­
nary general linear model theory to problems in marketing 
research. The usual goals in linear modeling are to estimate 
parameters and test hypotheses about those parameters. Typ­
ically, independence and normality are assumed. In conjoint 
analysis, each subject rates all products, and separate ordi­
nary least squares analyses are run for each subject. This is 
not a standard general linear model; in particular, observa­
tions are not independent and normality cannot be assumed. 
Discrete choice models, which are nonlinear, are even fur­
ther removed from the general linear model. 

Marketing researchers have always made the critical as­
sumption that designs that are good for general linear models 
are also good for conjoint analysis and discrete choice. We also 
make this assumption. Specifically, we assume the following: 

1. Market share estimates computed from a conjoint analysis 
model using a more efficient design will be better than esti­
mates using a less efficient design. That is, more efficient de­
signs mean better estimates of the partworth utilities, which 
lead to better estimates of product utility and market share. 

2. An efficient design for a linear model is a good design for the 
multinomial logit (MNL) model used in discrete choice 
studies. 

Investigating these standard assumptions is beyond the 
scope of this article. However, they are supported by Carson 
and colleagues (1994), our experiences in consumer product 
goods, and limited simulation results. Much more research is 
needed on this topic, particularly in the area of discrete choice. 

DESIGN OF EXPERIMENTS 

Orthogonal Experimental Designs 

An experimental design is a plan for running an experi­
ment. The factors of an experimental design are variables 
that have two or more fixed values, or levels. Experiments 
are performed to study the effects of the factor levels on the 
dependent variable. In a conjoint or discrete-choice study, 
the factors are the attributes of the hypothetical products or 
services, and the response is preference or choice. 

A simple experimental design is the full-factorial design, 
which consists of all possible combinations of the levels of 
the factors. For example, with five factors, two at two levels 
and three at three levels (denoted 2233), there are 108 possi­
ble combinations. In a full-factorial design, all main effects, 
two-way interactions, and higher-order interactions are es­

timable and uncorrelated. The problem with a full-factorial 
design is that, for most practical situations, it is too cost pro­
hibitive and tedious to have subjects rate all possible combi­
nations. For this reason, researchers often use fractional­
factorial designs, which have fewer runs than full-factorial 
designs. The price of having fewer runs is that some effects 
become confounded. Two effects are confounded or aliased 
when they are not distinguishable from each other. 

A special type of fractional-factorial design is the orthog­
onal array, in which all estimable effects are uncorrelated. 
Orthogonal arrays are categorized by their resolution. The 
resolution identifies which effects, possibly including inter­
actions, are estimable. For example, for resolution III de­
signs, all main effects are estimable free of each other, but 
some of them are confounded with two-factor interactions. 
For resolution V designs, all main effects and two-factor in­
teractions are estimable free of each other. Higher resolu­
tions require larger designs. Orthogonal arrays come in spe­
cific numbers of runs (e.g., 16, 18, 20, 24, 27, 28) for spe­
cific numbers of factors with specific numbers of levels. 

Resolution III orthogonal arrays are frequently used in 
marketing research. The term "orthogonal array," as it is 
used in practice, is imprecise. It refers to designs that are 
both orthogonal and balanced, and hence optimal. It also 
refers to designs that are orthogonal but not balanced, and 
hence potentially nonoptimal. A design is balanced when 
each level occurs equally often within each factor, which 
means the intercept is orthogonal to each effect. Imbalance 
is a generalized form of nonorthogonality, which increases 
the variances of the parameter estimates. 

Design Efficiency 

Efficiencies are measures of design goodness. Common 
measures of the efficiency of an ND x p design matrix X are 
based on the information matrix X'X. The variance-covari­
ance matrix of the vector of parameter estimates ~ in a least 
squares analysis is proportional to (X'Xt1. An efficient de­
sign will have a "small" variance matrix, and the eigenval­
ues of (X'X)-l provide measures of its "size." Two common 
efficiency measures are based on the idea of "average eigen­
value" or "average variance": A-efficiency is a function of 
the arithmetic mean of the eigenvalues, which is given by 
trace (X'X)-l/p, and D-efficiency is a function of the geo­
metric mean of the eigenvalues, which is given by 
I(X'Xt1jIlP. A third common efficiency measure, G-efficien­
cy, is based on aM, the maximum standard error for predic­
tion over the candidate set. All three of these criteria are con­
vex functions of the eigenvalues of (X'X)-l and hence are 
usually highly correlated. 

For all three criteria, if a balanced and orthogonal design 
exists, then it has optimum efficiency; conversely, the more 
efficient a design is, the more it tends toward balance and or­
thogonality. A design is balanced and orthogonal when 
(X'X)-l is diagonal (for a suitably coded X). A design is or­
thogonal when the submatrix of (X'X)-l, excluding the row 
and column for the intercept, is diagonal; there may be off­
diagonal nonzeros for the intercept. A design is balanced 
when all off-diagonal elements in the intercept row and col­
umn are zero. 
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These measures of efficiency can be scaled to range from 
oto 100 (for a suitably coded X): 

A-efficiency = 100 x __ 1 _ 

D-efficiency =100 x N I(X'X)-I Ilip
D 

G-efficiency =100 x -Vp/ND .
 
O"M
 

These efficiencies measure the goodness of the design rela­
tive to hypothetical orthogonal designs that may be far from 
possible, so they are not useful as absolute measures of de­
sign efficiency. Instead, they should be used relatively, to 
compare one design with another for the same situation. Ef­
ficiencies that are not near 100 may be perfectly satisfactory. 

Figure 1 shows an optimal design in four runs for a sim­
ple example with two factors, using interval measure scales 
for both. There are three candidate levels for each factor. 
The full-factorial design is shown by the nine asterisks, with 
circles around the optimal four design points. As this exam­
ple shows, efficiency tends to emphasize the comers of the 
design space. Interestingly, nine different sets of four points 
form orthogonal designs--every set of four that forms a 
rectangle or square. Only one of these orthogonal designs is 
optimal-the one in which the points are spread out as far as 
possible. 

Computer-Generated Design Algorithms 

When a suitable orthogonal design does not exist, com­
puter-generated nonorthogonal designs can be used instead. 
Various algorithms exist for selecting a good set of design 
points from a set of candidate points. The candidate points 
consist of all of the factor-level combinations that can po­
tentially be included in the design-for example, the nine 

Figure 1
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points in Figure 1. The number of runs, No, is chosen by the 
researcher. Unlike orthogonal arrays, No can be any number 
as long as No ~ p. The algorithm searches the candidate 
points for a set of No design points that is optimal in terms 
of a given efficiency criterion. 

It is usually not possible to list all No-run designs and 
choose the most efficient or optimal design, because run 
time is exponential in the number of candidates. For exam­
ple, with 2233 in 18 runs, there are 108!/(18!(1O8 - 18)!) = 
1.39 x 1020 possible designs. Instead, nonexhaustive search 
algorithms are used to generate a small number of designs, 
and the most efficient one is chosen. The algorithms select 
points for possible inclusion or deletion, then compute rank­
one or rank-two updates of some efficiency criterion. The 
points that most increase efficiency are added to the design. 
These algorithms invariably find efficient designs, but they 
may fail to find the optimal design, even for the given crite­
rion. For this reason, we prefer to use terms like informa­
tion-efficient and D-efficiency over the more common opti­
mal and D-optimal. 

There are many algorithms for generating information-ef­
ficient designs. We begin by describing some of the simpler 
approaches and then proceed to the more complicated (and 
more reliable) algorithms. Dykstra's (1971) sequential 
search method starts with an empty design and adds candi­
date points so that the chosen efficiency criterion is maxi­
mized at each step. This algorithm is fast, but it is not very 
reliable in finding a globally optimal design. Also, it always 
finds the same design (due to a lack of randomness). 

The Mitchell and Miller (1970) simple exchange algorithm 
is a slower but more reliable method. It improves the initial 
design by adding a candidate point and then deleting one of 
the design points, stopping when the chosen criterion ceases 
to improve. The DETMAX algorithm of Mitchell (1974) gen­
eralizes the simple exchange method. Instead of following 
each addition of a point by a deletion, the algorithm makes ex­
cursions in which the size of the design may vary. These three 
algorithms add and delete points one at a time. 

The next two algorithms add and delete points simultane­
ously and, for this reason, are usually more reliable for find­
ing the truly optimal design; but because each step involves 
a search over all possible pairs of candidate and design 
points, they generally run much more slowly (by an order of 
magnitude). The Federov (1972) algorithm simultaneously 
adds one candidate point and deletes one design point. Cook 
and Nachtsheim (1980) define a modified Federov algo­
rithm that finds the best candidate point to switch with each 
design point. The resulting procedure is generally as effi­
cient as the simple Federov algorithm in finding the optimal 
design, but it is up to twice as fast. 

Choice of Criterion and Algorithm 

Typically, the choices of efficiency criterion and algo­
rithm are less important than the choice between manual de­
sign creation and computerized search. All the information­
efficient designs presented in this article were generated op­
timizing D-efficiency because it is faster to optimize than A­
efficiency, and it is the standard approach. It is also possible 
to optimize A-efficiency, though the algorithms generally 
run much more slowly because the rank-one updates are 
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more complicated with A-efficiency. G-efficiency is an in­
teresting ancillary statistic; however, our experience sug­
gests that attempts to maximize G-efficiency with standard 
algorithms do not work very well. 

The algorithms, ordered from the fastest and least reliable 
to the slowest and most reliable, are sequential, simple ex­
change, DETMAX, and modified Federov. For small prob­
lems or fast computers, choose modified Federov. For cer­
tain extremely large problems, the sequential algorithm may 
be the only viable choice. We used the modified Federov al­
gorithm in all our examples because it is the most reliable 
and it runs fast enough on our work stations. 

It is certainly reasonable to try using other algorithms 
and/or criteria. For all but the most trivial of problems, only 
a tiny fraction of all possible designs will be examined. It is 
possible that alternative strategies will produce better de­
signs. However, our experience suggests that they are un­
likely to be much better. Techniques such as those outlined 
later in the "Strategies for Many Variables" and "Conjoint 
Analysis with Aggregate Interactions" sections are more 
likely to produce a more efficient design than changing the 
algorithm or criterion. 

Nonlinear Models 

The experimental design problem is relatively simple for 
linear models and much more complicated for nonlinear 
models. The usual goal when creating a design is to mini­
mize some function of the variance matrix of the parameter 
estimates, such as the determinant. For linear models, the 
variance matrix is proportional to (X'Xt l , and so the design 
optimality problem is well posed. However, for nonlinear 
models, such as the multinomial logit model used with dis­
crete-choice data, the variance matrix depends on the true 
values of the parameters themselves. Thus, in general, there 
may not exist a design for a discrete-choice experiment that 
is always optimal. However, Carson and colleagues (1994) 
and our experience suggest that D-efficient designs work 
well for discrete-choice models. 

Lazari and Anderson (1994) provide a catalog of designs 
for discrete-choice models, which are good for certain spe­
cific problems. For those specific situations, they may be as 
good as or better than computer-generated designs. Howev­
er, for many real problems, cataloged designs cannot be 
used without modification, and modification can reduce ef­
ficiency. We carry their work one step further by discussing 
a general computerized approach to design generation. 

DESIGN COMPARISONS 

Comparing Orthogonal Arrays 

All orthogonal arrays are not perfectly or even equally ef­
ficient. In this section, we compare designs for 2233. Table 1 
gives the information matrix X'X for a full-factorial design 
using an orthogonal coding. The matrix is a diagonal matrix 
with the number of runs on the diagonal. The three efficien­
cy criteria are printed after the information matrix. Because 
this is a full-factorial design, all three criteria show that the 
design is 100% efficient. The variance matrix (not shown) is 
(11108)1 =.00931. 

Table 2 shows the information matrix, efficiencies, and 
variance matrix for a classical 18-run orthogonal array for 

2233, Chakravarti's (1956) LIS, for comparison with infor­
mation-efficient designs with 18 runs. (The ADX menu sys­
tem of SAS ®l software [1989] was used to generate the de­
sign. Tables Al and A2 contain the factor levels and the or­
thogonal coding used in generating Table 2.) Note that al­
though the factors are all orthogonal to each other, Xl is not 
balanced. Because of this, the main effect of Xl is estimat­
ed with a higher variance (.063) than X2 (.056). 

The precision of the estimates of the parameters critically 
depends on the efficiency of the experimental design. The 
parameter estimates in a general linear model are always un­
biased (in fact, best linear unbiased [BLUED no matter what 
design is chosen. However, all designs are not equally effi­
cient. In fact, all orthogonal designs are not equally efficient 
even when they have the same factors and the same number 
of runs. Efficiency criteria can be used to help choose 
among orthogonal designs. For example, the orthogonal 
array in Tables 3 and A3 (from the Green and Wind 1975 
carpet cleaner example) for 2233 is less D-efficient than the 
Chakravarti LIS (97.4166/98.6998 =.9870). The Green and 
Wind design can be created from a 35 balanced orthogonal 
array by collapsing two of the three-level factors into two­
level factors. In contrast, the Chakravarti design is created 
from a 2134 balanced orthogonal array by collapsing only 
one of the three-level factors into a two-level factor. The 
extra imbalance makes the Green and Wind design less effi­
cient. (Note that the off-diagonal 2 in the Green and Wind 
information matrix does not imply that Xl and X2 are cor­
related; it is an artifact of the coding scheme. The off-diag­
onal 0 in the variance matrix shows that Xl and X2 are un­
correlated.) 

Orthogonal Versus Nonorthogonal Designs 

Orthogonal designs are not always more efficient than 
nonorthogonal designs. Tables 4 and A4 show the results for 
an information-efficient, main-effects-only design in 18 
runs. The OPTEX procedure of SAS software (1989) was 
used to generate the design, using the modified Federov al­
gorithm. The information-efficient design is slightly better 
than the classical LIS, in tenns of the three efficiency crite­
ria. In particular, the ratio of the D-efficiencies for the clas­
sical and information-efficient designs is 99.8621/98.6998 = 
1.0118. In contrast to the LIS, this design is balanced in all 
the factors, but Xl and X2 are slightly correlated, shown by 
the 2s off the diagonal. There is no known completely or­
thogonal (that is, both balanced and orthogonal) 2233 design 
in 18 runs. The nonorthogonality in Table 4 has a much 
smaller effect on the variances of X1 and X2 (1.2%) than the 
lack of balance in the orthogonal array in Table 2 has on the 
variance ofX2 (12.5%). In optimizing efficiency, the search 
algorithms effectively optimize both balance and orthogo­
nality. In contrast, in orthogonal arrays, balance and effi­
ciency may be sacrificed to preserve orthogonality. 

This example shows that nonorthogonal designs may be 
more efficient than an unbalanced orthogonal array. We have 
seen this phenomenon with other orthogonal arrays and in 
other situations as well. Preserving orthogonality at all 
costs can lead to decreased efficiency. Orthogonality was 

ISAS is a registered trademark of SAS Institute Inc. in the USA and 
other countries. ® indicates USA registration. 
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extremely important in the days before general linear model 
software became widely available. Today, it is more impor­
tant to consider efficiency when choosing a design. These 
comparisons are interesting because they illustrate, in a sim­
ple example, how lack of orthogonality and imbalance affect 
efficiency. Nonorthogonal designs will never be more effi­
cient than balanced orthogonal designs, when they exist. 
However, nonorthogonal designs may well be more efficient 
than unbalanced orthogonal arrays. Although this point is in­
teresting and important, what is most important is that good 
nonorthogonal designs exist in many situations in which no 
orthogonal designs exist. 

DESIGN CONSIDERATIONS 

Codings and Efficiency 

The specific design matrix coding does not affect the rel­
ative D-efficiency of competing designs. Rank-preserving 
linear transformations are immaterial, whether they are from 
full-rank dummy variables to effects coding or to an orthog­
onal coding such as the one shown in Table A2. Any full­
rank coding is equivalent to any other. The absolute D-effi­
ciency values will change, but the ratio of two D-efficiencies 
for competing designs is constant. Similarly, scale for quan­
titative factors does not affect relative efficiency. The proof 
is simple. If design XI is recoded to X1A, then 
I(XIA)'(XIA)I = IA'XI'XIAI = IAA'IIXI'XII. The relative ef­
ficiency of design Xl compared with X2 is the same as XIA 
compared with X2A, because the IAA' I terms in efficiency 
ratios will cancel. We prefer the orthogonal coding because 
it yields "nicer" information matrices with the number of 
runs on the diagonal and efficiency values scaled so that 100 
means perfect efficiency. 

Quantitative Factors 

The factors in an experimental design are usually qualita­
tive (nominal), but quantitative factors such as price are also 
important. With quantitative factors, the choice of levels de­
pends on the function of the original variable that is mod­
eled. To illustrate, consider a pricing study in which price 
ranges from $.99 to $1.99. If a linear function of price is 
modeled, only two levels of price should be used-the end 
points ($.99 and $1.99). Using prices that are closer togeth­
er is inefficient; the variances of the estimated coefficients 
will be larger. The efficiency of a given design is affected by 
the coding of quantitative factors, even though the relative 
efficiency of competing designs is unaffected by coding. 
Consider treating the second factor of the Chakravarti L18, 

2233, as linear. It is nearly three times more D-efficient to 
use $.99 and $1.99 as levels instead of $1.49 and $1.50 
(58.6652 / 21.0832 = 2.7826). To visualize this, imagine 
supporting a yard stick (line) on your two index fingers 
(with two points). The effect on the slope of the yard stick 
of small vertical changes in finger locations is much greater 
when your fingers are closer together than when they are 
near the ends. 

Of course there are other considerations besides the nu­
merical measure of efficiency. It would not make sense to 
use prices of S.Ol and S1.000.000 just because that is more 
efficient than using S 99 and S1. 99. The model is almost cer­

tainly not linear over this range. To maximize efficiency, the 
range of experimentation for quantitative factors should be 
as large as possible, given that the model is plausible. 

The number of levels also affects efficiency. Because two 
points define a line, it is inefficient to use more than two 
points to model a linear function. When a quadratic function 
is used (x and x2 are included in the model), three points are 
needed-the two extremes and the midpoint. Similarly, four 
points are needed for a cubic function. More levels are need­
ed when the functional form is unknown. Extra levels allow 
for the examination of complicated nonlinear functions, 
with a cost of decreased efficiency for the simpler functions. 
When the function is assumed to be linear, experimental 
points should not be spread throughout the range of experi­
mentation. See Kuhfeld and Garratt (1992) for a discussion 
of nonlinear functions of quantitative factors in conjoint 
analysis. 

Most of the discussion outside this section has concerned 
qualitative (nominal) factors, even if that was not always ex­
plicitly stated. Quantitative factors complicate general de­
sign characterizations. For example, we previously stated 
that "if a balanced and orthogonal design exists, then it has 
optimum efficiency." This statement must be qualified to be 
absolutely correct. The design would not be optimal if, for 
example, a three-level factor was treated as quantitative and 
linear. 

Nonstandard Algorithms and Criteria 

Other researchers have proposed other algorithms and cri­
teria. Steckel, DeSarbo, and Mahajan (SDM) (1991) previ­
ously proposed using computer-generated experimental de­
signs for conjoint analysis to exclude unacceptable combi­
nations from the candidate set. They considered a nonstan­
dard measure of design goodness based on the determinant 
of the correlation matrix (IRI). Designs generated using non­
standard criteria will not generally be efficient in terms of 
standard criteria like A-efficiency and D-efficiency, so the 
parameter estimates will have larger variances. The SDM 
procedure could allow the use of both standard and nonstan­
dard efficiency criteria through optional preprocessing of 
the data or user-created subroutines. 

We generated a D-efficient design for SDM's example, 
treating the variables as all quantitative (as they did). The IRI 
for the SDM design is .9932, whereas the IRI for the infor­
mation-efficient design is .9498. The SDM approach works 
quite well in maximizing IRI; hence the SDM design is close 
to orthogonal. However, efficiency is not always maximized 
when orthogonality is maximized. The SDM design is ap­
proximately 75% as D-efficient as a design generated with 
standard criteria and algorithms (70.1182 / 93.3361 = 
.7512). 

Choosing a Design 

Computerized search algorithms generate many designs, 
from which the researcher must choose one. Often, several 
designs are tied or nearly tied for the be-st D, A, and G in­
formation efficiencies. A design should be chosen after ex­
amining the design matrix, its information matrix, and its 
variance matrix. It is important to look at the results and not 
just routinely choose the design from the top of the list. 
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Table 1 others. Perhaps imbalance is tolerable, but the correlations 
FULL-FACTORIAL DESIGN between the factors should be minimal. Goals will no doubt 

change from experiment to experiment. Choosing a suitable 
Information Matrix design can be part art and part science. Efficiency should al­

ways be considered when choosing between alternative de­Jnt Xl X2 X3 X4 - X5 
signs, even manually created designs, but it is not the only 

Jnt 108 0 0 0 0 0 0 0 0 consideration.Xl 0 108 0 0 0 0 0 0 0
 
X2 0 0 108 0 0 0 0 0 0
 Adding Observations or VariablesX3 0 0 0 108 0 0 0 0 0 

0 0 0 0 108 0 0 0 0 These techniques can be extended to augment an existing
X4 0 0 0 0 0 108 0 0 0 design. A design with r runs can be created by augmenting 

0 0 0 0 0 0 108 0 0 
X5 0 m specified combinations (established brands or existing 0 0 0 0 0 0 108 0 

0 0 0 0 0 0 0 0 108 combinations) with r - m combinations chosen by the algo­
rithm. Alternatively, combinations that must be used for cer­100.0000 D-efficiency 

100.0000 A-efficiency tain variables can be specified, and then the algorithm picks 
100.0000 G-efficiency the levels for the other variables (Cook and Nachtsheim 

1989). This can be used to ensure that some factors are bal-
For studies involving human subjects, achieving at least anced or uncorrelated; another application is blocking fac­

nearly balanced designs is an important consideration. Con- tors. Using design algorithms, we are able to establish num­
sider, for example, a two-level factor in an 18-run design in bers of runs and blocking patterns that fit into practical field­

ing schedules. which one level occurs 12 times and the other level occurs 6 
times versus a design in which each level occurs 9 times. Designs With Interactions 
Subjects who see one level more often than the other may 

There is a growing interest in using both main effects and try to read something into the study and adjust their re-
interactions in discrete-choice models, because interaction 

sponses in some way. Alternatively, subjects who see one and cross-effect terms may improve aggregate models
level most often may respond differently than those who see (Elrod, Louviere, and Davey 1992). The current standard for 
the second level most often. These are not concerns with choice models is to have all main effects estimable both 
nearly balanced designs. One design selection strategy is to within and between alternatives. It is often necessary to es-
choose the most balanced design from the top few. timate interactions within alternatives, such as in modeling 

Many other strategies can be used. Perhaps correlation separate price elasticities for product forms, sizes, or pack-
and imprecision are tolerable in some variables but not in ages. For certain classes of designs, in which a brand ap-

Table 2 Table 3 
ORTHOGONAL ARRAY GREEN AND WIND ORTHOGONAL ARRAY 

Information Matrix Information Matrix 

Jnt Xl X2 X3 X4 X5 - Jnt Xl X2 X3 X4 X5
 
Int 18 6 0 0 0 0 0 0 0 Jnt 18 -6 -6 0 0 0 0 0 0
 
Xl 6 18 0 0 0 0 0 0 0 Xl -6 18 2 0 0 0 0 0 0
 
X2 0 0 18 0 0 0 0 0 0 X2 -6 2 18 0 0 0 0 0 0
 
X3 0 0 0 18 0 0 0 0 0 X3 0 0 0 18 0 0 0 0 0
 

0 0 0 0 18 0 0 0 0 0 0 0 0 18 0 0 0 0 
X4 0 0 0 0 0 18 0 0 0 X4 0 0 0 0 0 18 0 0 0 

0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 18 0 0 
X5 0 0 0 0 0 0 0 18 0 X5 0 0 0 0 0 0 0 18 0 

0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 18 

98.6998 D-efficiency 97.4166 D-efficiency
 
97.2973 A-efficiency 94.7368 A-efficiency
 
94.8683 G-efficiency 90.4534 G-efficiency
 

Variance Matrix Variance Matrix 

Jnt Xl X2 X3 X4 X5 Jnt Xl X2 X3 X4 X5
 
Jnt 63 -21 0 0 0 0 0 0 0 Jnt 69 21 21 0 0 0 0 0 0
 
Xl -21 63 0 0 0 0 0 0 0 Xl 21 63 0 0 0 0 0 0 0
 
X2 0 0 56 0 0 0 0 0 0 X2 21 0 63 0 0 0 0 0 0
 
X3 0 0 0 56 0 0 0 0 0 X3 0 0 0 56 0 0 0 0 0
 

0 0 0 0 56 0 0 0 0 0 0 0 0 56 0 0 0 0 
X4 0 0 0 0 0 56 0 0 0 X4 0 0 0 0 0 56 0 0 0 

0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 56 0 0 
X5 0 0 0 0 0 0 0 56 0 X5 0 0 0 0 0 0 0 56 0 

0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 56 

Note: multiply variance matrix values by .001. Note: multiply variance matrix values by .001. 



551 Efficient Experimental Design with Marketing Research Applications 

Table 4 
MODIFIED FEDEROV ALGORITHM 

Information Matrix 

Int XI X2 X3 - X4 - X5 
Int 18 0 0 0 0 0 0 0 0 
XI 0 18 2 0 0 0 0 0 0 
X2 0 2 18 0 0 0 0 0 0 
X3 0 0 0 18 0 0 0 0 0 

0 0 0 0 18 0 0 0 0 
X4 0 0 0 0 0 18 0 0 0 

0 0 0 0 0 0 18 0 0 
X5 0 0 0 0 0 0 0 18 0 

0 0 0 0 0 0 0 0 18 

99.8621 D-efficiency 
99.7230 A-efficiency 
98.6394 G-efficiency 

Variance Matrix 

Int Xl X2 X3 X4 X5 
Int 56 0 0 0 0 0 0 0 0 
XI 0 56 -6 0 0 0 0 0 0 
X2 0 -6 56 0 0 0 0 0 0 
X3 0 0 0 56 0 0 0 0 0 

0 0 0 0 56 0 0 0 0 
X4 0 0 0 0 0 56 0 0 0 

0 0 0 0 0 0 56 0 0 
X5 0 0 0 0 0 0 0 56 0 

0 0 0 0 0 0 0 0 56 

Notes: multiply variance matrix values by .001. 
The diagonal entries for XI and X2 are slightly larger at .0563 than the 

other diagonal entries of .0556. 

pears in only a subset of runs, it is often necessary to have 
estimable main effects, own-brand interactions, and cross­
effects in the submatrix of the design in which that brand is 
present. One way to ensure estimability is to include in the 
model interactions between the alternative-specific variables 
of interest and the indicator variables that control for pres­
ence or absence of the brand in the choice set. Orthogonal 
designs that allow for estimation of interactions are usually 
very large, whereas efficient nonorthogonal designs can be 
generated for any linear model, including models with inter­
actions, and for any (reasonable) number of runs. 

Unrealistic Combinations 

It is sometimes useful to exclude certain combinations 
from the candidate set. SDM (1991) have also considered 
this problem. Consider a discrete-choice model for several 
brands and their line extensions. It may not make sense to 
have a choice set in which the line extension is present and 
the "flagship" brand absent. Of course, as we eliminate 
combinations, we may introduce unavoidable correlation 
between the parameter estimates. In Tables 5 and A5, the 
20 combinations in which (Xl = 1 and X2 = 1 and X3 = 1) 
or (X4 =1 and X5 =1) were excluded, and an 18-run design 
was generated with the modified Federov algorithm. 
With these restrictions, the efficiency criteria dropped 
(96.4182/99.8621 = .9655). This shows that the design with 
excluded combinations is almost 97% as efficient as the 1)est 
(unrestricted) design. The information matrix shows that Xl 
and X2 are correlated, as are X4 and X5. This is the price 
paid for obtaining a design with only realistic combinations. 

Table 5
 
UNREALISTIC COMBINATIONS EXCLUDED
 

Information Matrix 

Int XI X2 X3 X4 X5 
Int 18 0 0 0 0 0 0 0 0 
XI 0 18 2 0 0 0 0 0 0 
X2 0 2 18 0 0 0 0 0 0 
X3 0 0 0 18 0 0 0 0 0 

0 0 0 0 18 0 0 0 0 
X4 0 0 0 0 0 18 0 -6 5 

0 0 0 0 0 0 18 5 0 
X5 0 0 0 0 0 -6 5 18 0 

0 0 0 0 0 5 0 0 18 

96.4182 D-efficiency 
92.3190 A-efficiency 
91.0765 G-efficiency 

Variance Matrix 

Int Xl X2 X3 X4 X5 
Int 56 0 0 0 0 0 0 0 0 
Xl 0 56 -6 0 0 0 0 0 0 
X2 0 -6 56 0 0 0 0 0 0 
X3 0 0 0 56 0 0 0 0 0 

0 0 0 0 56 0 0 0 0 
X4 0 0 0 0 0 69 -7 25 -20 

0 0 0 0 0 -7 61 -20 2 
X5 0 0 0 0 0 25 -20 69 -7 

0 0 0 0 0 -20 2 -7 61 

Note: multiply variance matrix values by .001. 

In the "Quantitative Factors" section, we state, "Because 
two points define a line, it is inefficient to use more than two 
points to model a linear function." When unrealistic combina­
tions are excluded, this statement may no longer be true. For 
example, if minimum price with maximum size is excluded, 
an efficient design may involve the median price and size. 

Choosing the Number ofRuns 

Deciding on a number of runs for the design is a compli­
cated process; it requires balancing statistical concerns of 
estimability and precision with practical concerns like time 
and subject fatigue. Optimal design algorithms can generate 
designs for any number of runs greater than or equal to the 
number of parameters. The variances of the least squares es­
timates of the partworth utilities will be roughly inversely 
proportional to both the D-efficiency and the number of 
runs. In particular, for a given number of runs, aD-efficient 
design will give more accurate estimates than would be ob­
tained with a less efficient design. A more precise value for 
the number of choices depends on the ratio of the inherent 
variability in subject ratings to the absolute size of utility 
that is considered important. Subject concerns probably out­
weigh the statistical concerns, and the best course is to pro­
vide as many products as are practical for the subjects to 
evaluate. In any case, the use of information-efficient de­
signs provides more flexibility than manual methods. 

Asymmetry in the Number of Levels of Variables 

In many practical applications of discrete-choice model­
ing, there is asymmetry in the number of factor levels, and 



552 JOURNAL OF MARKETING RESEARCH, NOVEMBER 1994 

interaction and polynomial parameters must be estimated. 
One common method for generating choice model designs 
is to create a resolution III orthogonal array and modify it. 
The starting point is a q~Mj design, where q represents a 
fixed number of levels across all attributes and Mj represents 
the number of attributes for brand j. For example, in the con­
sumer food product example in a subsequent section, with 
five brands with 1,3, 1,2, and I attributes and with each at­
tribute having at most four levels, the starting point is a 48 

orthogonal array. Availability cross-effect designs are creat­
ed by letting one of the Mj variables function as an indicator 
for presence/absence of each brand or by allowing one level 
of a common variable (price) to operate as the indicator. 
These methods are fairly straightforward to implement in 
designs in which the factor levels are all the same, but they 
become quite difficult to set up when there are different 
numbers of levels for some factors or specific interactions 
must be estimable. 

Asymmetry in the number of levels of factors may be 
handled either by using the "coding down" approach (Ad­
delman 1962) or by expansion. In the coding down ap­
proach, designs are created using factors that have numbers 
of levels equal to the largest number required in the design. 
Factors that have fewer levels are created by recoding. For 
example, a five-level factor {I, 2, 3, 4, 5} can be recoded 
into a three-level factor by duplicating levels {I, 1, 2, 2, 3}. 
The variables will still be orthogonal because the dummy 
variables for the recoding are in a subspace of the original 
space. However, recoding introduces imbalance and ineffi­
ciency. The second method is to expand a factor at k-Ievels 
into several variables at some fraction of k-Ievels. For ex­
ample, a four-level variable can be expanded into three or­
thogonal two-level variables. In many cases, both methods 
must be used to achieve the required design. 

These approaches are difficult for a simple main-effect 
design of resolution III and extremely difficult when inter­
actions between asymmetric factors must be considered. In 
practical applications, asymmetry is the norm. Consider, for 
example, the form of an analgesic product. One brand may 
have caplet and tablet varieties, and another may have tablet, 
liquid, and chewable forms. In a discrete-choice model, 
these two brand/forms must be modeled as asymmetric al­
ternative-specific factors. If we furthermore anticipated that 
the direct price elasticity might vary, depending on the form, 
we would need to estimate the interaction of a quantitative 
price variable with the nominal-level form variable. 

Computerized search methods are simpler to use by an 
order of magnitude. They provide asymmetric designs that 
are usually nearly balanced, as well as provide easy specifi­
cation for interactions, polynomials, and continuous-by­
class effects. 

Strategies for Many Variables 

Consider generating a 315 design in 31 runs. There are 
14,348,907 combinations in the full-factorial design, which 
is too many to use even for a candidate set. Two alternative 
candidate sets are an orthogonal resolution III design in 81 
runs and an orthogonal resolution V design in 2187 runs. 
The resulting 31-run designs had D-efficiencies of 77 .6502 
and 80.3932, respectively. (Efficiencies tend to be larger 

with larger candidate sets, but run times are much slower.) 
Another alternative is to try a multistep process, beginning 
with a search for a small, good candidate set. We started 
with a 312 orthogonal array in 36 runs, specified those 12 
variables as fixed covariates, and used a search algorithm to 
create three additional variables, still in 36 runs. We then 
used that design as a candidate set. The resulting D-efficien­
cy of 83.4952 was better than any previously found. Without 
computerized search algorithms, it is extremely difficult to 
find an efficient design for this situation. Just for compari­
son, we randomly generated one thousand 315 designs in 31 
runs. The best random design was only 57% as efficient as 
our most D-efficient design. For obvious reasons, we do not 
recommend using random designs. 

EXAMPLES 

Choice of Consumer Food Products 

Consider the problem of using a discrete choice model to 
study the effect of introducing a retail food product. This 
may be useful, for example, to refine a marketing plan or op­
timize a product prior to test market. A typical brand team 
will have several concerns, such as knowing the potential 
market share for the product, examining the source of vol­
ume, and providing guidance for pricing and promotions. 
The brand team may also want to know what brand at­
tributes have competitive clout and want to identify compet­
itive attributes to which they are vulnerable. 

To develop this further, assume our client wishes to intro­
duce a line extension in the category of frozen entrees. The 
client has one nationally branded competitor, a regional 
competitor in each of three regions, and a profusion of pri­
vate label products at the grocery chain level. The product 
comes in two different forms: stove-top or microwaveable. 
The client believes that the private labels are very likely to 
mimic this line extension and sell it at a lower price. The 
client suspects that this strategy on the part of private labels 
may work for the stove-top version but not for the mi­
crowaveable, for which they have the edge on perceived 
quality. They also want to test the effect of a shelf-talker that 
will draw attention to their product. 

This problem can be set up as a discrete choice model in 
which a respondent's choice among brands, given choice set 
Ca of available brands, will correspond to the brand with the 
highest utility. For each brand i, the utility Ui is the sum of a 
systematic component Vi and a random component ei. The 
probability of choosing brand i from choice set Ca is therefore 

P(iIC") =P(Uj > max(Uj» =P(Vj + e; > max(Vj + ej» V G"F- i) E Ca' 

Assuming that the ei follow an extreme value type I dis­
tribution, the conditional probabilities P(iICa) can be found 
using the MNL formulation of McFadden (1974) 

P(iICa) =exp(Vi)lLjECa exp(Vj). 

One of the consequences of the MNL formulation is the 
property of independence of irrelevant alternatives (IlA). 
Under the assumption of 1lA, all cross-effects are assumed 
to be equal, so that if a brand gains in utility, it draws share 
from all other brands in proportion to their current shares. 
Departures from IIA exist when certain subsets of brands are 
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in more direct competition and tend to draw a dispropor­
tionate amount of share from each other than from other 
members in the category. One way to capture departures 
from IIA is to use the mother logit formulation of McFad­
den (1974). In these models, the utility for brand i is a func­
tion of both the attributes of brand i and the attributes of 
other brands. The effect of one brand's attributes on another 
is termed a cross-effect. In the case of designs in which only 
subsets Ca of the full shelf set C appear, the effect of the 
presence or absence of one brand on the utility of another is 
termed an availability cross-effect. 

In the frozen entree example, there are five alternatives: 
the client, the client's line extension, a national branded 
competitor, a regional brand, and a private label brand. Sev­
eral regional and private labels can be tested in each market, 
then aggregated for the final model. Note that the line ex­
tension is treated as a separate alternative rather than as a 
"level" of the client brand. This enables us to model the 
source of volume for the new entry and quantify any canni­
balization that occurs. Each brand is shown at either two or 
three price points. Additional price points are included so 
that quadratic models of price elasticity can be tested. The 
indicator for the presence or absence of a brand in the shelf 
set is coded using one level of the price variable. The layout 
of factors and levels is given in Table 6. 

In addition to intercepts and main effects, we also require 
that all two-way interactions within alternatives be es­
timable: X2*X3, X2*X4, X3*X4 for the line extension and 
X6*X7 for private labels. This enables us to test for differ­
ent price elasticities by form (stove-top versus microwave­
able) and to see if the promotion works better combined 
with a low price or with different forms. Using a linear 
model for X I-X8, the total number of parameters including 
the intercept, all main effects, and two-way interactions with 
brand is 25. This assumes that price is treated as qualitative. 
The actual number of parameters in the choice model is larg­
er than this because of the inclusion of cross-effects. Using 
indicator variables to code availability, the systematic com­
ponent of utility for brand i can be expressed as 

Vi =aj + Ik(bik X Xik) + I j "izjCdij + I\(gijl X XjI», 

where 

ai =intercept for brand i,
 
b ik = effect of attribute k for brand i, where k = I, ..., Kj
 

xik =level of attribute k for brand i,
 
dij =availability cross-effect of brand j on brand i,
 

'" {lifjECa, 
zJ' =aVailabilIty code = 0 th .a erWlse, 

gij\ = cross-effect of attribute 1for brand j on brand i, where l = 
I, ... , Lj , and 

Xjl =level of attribute l for brand j. 

The Xik and Xjl might be expanded to include interaction 
and polynomial terms. In an availability cross-effects de­
sign, each brand is present in only a fraction of choice sets. 
The size of this fraction or subdesign is a function of the 
number of le\els of the alternative-specific variable that is 
used to code a\3.il.1riL': iu"mll:- pricel For example. if 
price has three \ 3.::-::::'. :::" ~.j .1:>.1-1:--_'"' "zer,'" :::\::: :' ;:,j: ­
cate absence. ther, :'-e '"':-~ j .• :' .1:'::":'2.: ,-, --', '--~~ . --' 

Table 6
 
ALTERNATIVE FACTOR LEVELS BRAND DESCRIPTION
 

Alternative Factor Levels Brand Description 

Xl 4 Client 3 prices + absent 

2 X2 4 Client Line Extension 3 prices + absent 
X3 2 microwave/stove-top 
X4 2 shelf-talker yes/no 

3 X5 3 Regional 2 prices + absent 

4 X6 3 Private Label 2 prices + absent 
X7 2 microwave/stove-top 

5 X8 3 Competitor 2 prices + absent 

Table 7
 
PARAMETERS
 

Client 
line Private 

Effect Client Extension Regional Label Competitor 

intercept 1 1 1 1 1 
availability cross-effects 4 4 4 4 4 
direct price effect 1 (2) 1 (2) I 1 I 
price cross-effects 4 (8) 4 (8) 4 4 4 
stove versus microwave 1 - 1 
stove/micro cross-effects I 
shelf-talker - I 
price*stove/microwave 1 (2) 
price*shelf-talker - 1 (2) 
stove/micro*shelf-talker 1 

Total 10 (15) 16 (23) 10 12 10 

Subdesign size 

22 runs 16 16 14 14 14 
26 runs 19 19 17 17 17 
32 runs 24 24 21 21 21 

four runs. Following Lazari and Anderson (1994), the size of 
each subdesign determines how many model equations can 
be written for each brand in the discrete choice model. If Xi 
is the subdesign matrix corresponding to Vi> then each Xi 
must be full rank to ensure that the choice set design pro­
vides estimates for all parameters. 

To create the design, a full candidate set is generated con­
sisting of 3456 runs. It is then reduced to 2776 runs that con­
tain between two and four brands so that the respondent is 
never required to compare more than four brands at a time. In 
the algorithm model specification, we designate all variables 
as classification variables and require that all main effects and 
two-way interactions within brands be estimable. The number 
of runs to use follows from a calculation of the number of pa­
rameters that we wish to estimate in the various submatrices 
Xi of X. Assuming that there is a category "None" used as a 
reference cell, the numbers of parameters required for various 
alternatives are shown in Table 7 along with the size of sub­
matrices (rounded down) for various numbers of runs. Pa­
rameters for quadratic price models are given in parentheses. 
Note that the effect of the private label being in a microwave­
able or stove-top form (stove/micro cross-effect) is an explic­
it parameter under the client line extension. 

The number of runs chosen was N =26. This number pro­
'. ..:e" .:.j::Cjuate degrees of freedom for the linear price model 
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and will also allow estimation of direct quadratic price ef­
fects. To estimate quadratic cross-effects for price would re­
quire 32 runs at the very least. Although the technique of 
using two-way interactions between nominal level variables 
will usually guarantee that all direct and cross-effects are es­
timable, it is sometimes necessary and a good practice to 
check the ranks of the submatrices for more complex models 
(Lazari and Anderson 1994). Creating designs for cross ef­
fects can be difficult, even with the aid of a computer. 

It took approximately 18 minutes on an HP700 worksta­
tion to generate 200 designs. The code in Table A9 was 
used.2 The final (unrandomized) design in 26 runs is in 
Table A6. The coded choice sets are presented in Table A7 
and the level frequencies are presented in Table A8. Note 
that the runs have been ordered by the presence or absence 
of the shelf-talker. This ordering is done because it is unre­
alistic to think that once the respondent's attention has been 
drawn in by the promotion, it can simply be "undrawn." The 
two blocks that result can be shown to two groups of people 
or to the same people sequentially. It would be extremely 
difficult and time-consuming to generate a design for this 
problem without a computerized algorithm. 

Conjoint Analysis with Aggregate Interactions 

This example illustrates creating a design for a conjoint 
analysis study. The goal is to create a 36 design in 90 runs. 
The design consists of five blocks of 18 runs each, so each 
subject will only have to rate 18 products. Within each 
block, main effects must be estimable. In the aggregate, all 
main effects and two-way interactions must be estimable. 
(The utilities from the main-effects models will be used to 
cluster subjects, then in the aggregate analysis, clusters of 
subjects will be pooled across blocks and the blocking fac­
tor ignored.) Our goal is to create a design that is simultane­
ously efficient in six ways. Each of the five blocks should be 
an efficient design for a first-order (main-effects) model, 
and the aggregate design should be efficient for the second­
order (main-effects and two-way interactions) model. The 
main-effects models for the five blocks have 5 (1 + 6(3 - 1)) 
=65 parameters. In addition, there are (6 x 512) (3 - 1) 
(3 - 1) = 60 parameters for interactions in the aggregate 
model. There are more parameters than runs, but not all pa­
rameters will be simultaneously estimated. 

One approach to this problem is the Bayesian regression 
method of DuMouchel and Jones (1994). Instead of opti­
mizing IX'XI, we optimized IX'X + PI, where P is a diago­
nal matrix of prior precisions. This is analogous to ridge re­
gression, in which a diagonal matrix is added to a rank­
deficient X'X to create a full-rank problem. We specified a 
model with a blocking variable, main effects for the six fac­
tors, block-effect interactions for the six factors, and all two­
way interactions. We constructed P to contain zeros for the 
blocking variable, main effects, and block-effect interac­
tions, and 45s (the number of runs divided by 2) for the two­
way interactions. Then we used the modified Federov algo­
rithm to search for good designs. 

2AlIthe SAS code used in this article, for running the OPTEX, FACTEX, 
and other procedures, is available from the first author. E-mail requests are 
preferred at saswfk@unx.sas.com. Otherwise, write Warren F. Kuhfeld, 
Statistical R&D, R5227, SAS Institute Inc., Cary, NC 27513-2414. 

With an appropriate coding for X, the value of the prior 
precision for a parameter roughly reflects the number of 
runs worth of prior information available for that parameter. 
The larger the prior precision for a parameter, the less infor­
mation about that parameter is in the final design. Specify­
ing a nonzero prior precision for a parameter reduces the 
contribution of that parameter to the overall efficiency. For 
this problem, we wanted maximal efficiency for the within­
subject main-effects models, so we gave a nonzero prior pre­
cision to the aggregated two-way interactions. 

Our best design had a D-efficiency for the second-order 
model of 63.9281 (with a D-efficiency for the aggregate main­
effects model of 99.4338) and D-efficiencies for the main-ef­
fects models within each block of 100.0000, 100.0000, 
100.0000, 99.0981, and 98.0854. The design is completely 
balanced within all blocks. We could have specified other val­
ues in P and gotten better efficiency for the aggregate design 
but less efficiency for the blocks. Choice of P depends in part 
on the primary goals of the experiment. It may require some 
simulation work to determine a good choice of P. 

All the examples in this article so far have been straight­
forward applications of computerized design methodology. 
A set of factors, levels, and estimable effects was specified, 
and the computer looked for an efficient design for that 
specification. Simple problems, such as those discussed pre­
viously, require only a few minutes of computer time. This 
problem was much more difficult, so we let a work station 
generate designs for about 72 hours. (We could have found 
less efficient but still acceptable designs in much less time.) 
We were asking the computer to find a good design out of 
over 9.6 x 10116 possibilities. This is like looking for a nee­
dle in a haystack when the haystack is the size of the entire 
known universe. With such problems, we may do better if 
we use our intuition to give the computer "hints," forcing 
certain structure into the design. To illustrate, we tried this 
problem again, this time using a different approach. 

We used the modified Federov algorithm to generate 
main-effects only 36 designs in 18 runs. We stopped when 
we had ten designs with 100% efficiency. We then wrote an 
ad hoc program that randomly selected five of the ten de­
signs, randomly permuted columns within each block, and 
randomly permuted levels within each block. These opera­
tions do not affect the first-order efficiencies but do affect 
the overall efficiency for the aggregate design. When an op­
eration increased efficiency, the new design was kept. We it­
erated over the entire design 20 times. We let the program 
run for about 16 hours, which generated 98 designs, and we 
found our best design in three hours. Our best design had a 
D-efficiency for the second-order model of 68.0565 (versus 
63.9281 previously), and all first-order efficiencies of 100. 

Many other variations on this approach could be tried. For 
example, columns and blocks could be chosen at random, 
instead of systematically. We performed excursions of up to 
eight permutations before we reverted to the previous de­
sign; this number could be varied. It seemed that permuting 
the levels helped more than permuting the columns, though 
this was not thoroughly investigated. Whatever is done, it is 
important to consider efficiency. For example, just random­
ly permuting levels can create very inefficient designs. 

For this particular problem, the ad hoc algorithm generated 
better designs than the Bayesian method, and it required less 
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computer time. In fact, 91 out of the 98 ad hoc designs were 
better than the best Bayesian design. However, the ad hoc 
method required much more programmer time. It is possible 
to create a design manually for this situation, but it would be 
extremely difficult and time-consuming to find an efficient 
design without a computerized algorithm for all but the most 
sophisticated of human designers. The best designs were 
found when we used both our human design skills and a com­
puterized search. We have frequently found this to be the case. 

CONCLUSION 

Computer-generated experimental designs can provide 
both better and more general designs for discrete-choice and 
preference-based conjoint studies. Classical designs, ob­
tained from books or computerized tables, can be good op­
tions when they exist, but they are not the only option. The 
time-consuming and potentially error-prone process of find­
ing and manually modifying an existing design can be 
avoided. When the design is nonstandard and there are re­
strictions, a computer can generate a design, and it can be 
done quickly. In most situations, a good design can be gen­
erated in a few minutes or hours, though for certain difficult 

problems more time may be necessary. Furthermore, when 
the circumstances of the project change, a new design can 
again be generated quickly. 

We do not argue that computerized searches for D-efficient 
designs are uniformly superior to manually generated designs. 
The human designer, using intuition, experience, and heuris­
tics, can recognize structure that an optimization algorithm 
cannot. On the other hand, the computerized search usually 
does a good job, it is easy to use, and it can create a design 
faster than manual methods, especially for the nonexpert. 
Computerized search methods and the use of efficiency crite­
ria can benefit expert designers as well. For example, the ex­
pert can manually generate a design and then use the comput­
er to evaluate and perhaps improve its efficiency. 

In nonstandard situations, simultaneous balance and or­
thogonality may be unobtainable. Often, the best that can be 
hoped for is optimal efficiency. Computerized algorithms 
help by searching for the most efficient designs from a po­
tentially very large set of possible designs. Computerized 
search algorithms for D-efficient designs do not supplant 
traditional design-creation skills. Rather, they provide help­
ful tools for finding good, efficient experimental designs. 

Table A1 Table A3 
CHAKRAVARTI'S L18 FACTOR LEVELS GREEN AND WIND ORTHOGONAL ARRAY EXAMPLE 

Xl X2 X3 X4 X5 Xl X2 X3 X4 X5 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 0 0 1 -1 -1 -1 1 0 
-1 -1 1 1 0 -1 -1 0 -1 -1 
-1 1 -1 1 0 -1 -I 0 0 1 
-1 1 0 -1 -1 -I -1 0 1 -1 
-1 1 1 0 1 -1 -1 1 -1 0 

1 -1 -1 0 0 -1 -I 1 0 1 
1 -1 -1 1 1 -1 -1 1 1 0 
1 -1 0 -1 0 -1 1 -1 1 1 
1 -1 0 1 -1 -1 1 -1 -1 1 
1 -1 1 -1 1 -1 1 0 0 0 
1 -1 1 0 -1 -1 1 1 0 -1 
1 1 -1 -1 1 1 -1 -1 0 -1 
1 1 -1 0 -1 1 -1 -1 0 0 
1 1 0 0 0 1 1-1 0 1 
1 1 0 1 1 1 -1 1 -1 1 
1 1 1 -I 0 1 1 1 1 -1 
1 1 1 1 -1 1 1 0 -1 0 

Table A2 Table A4 
CHAKRAVARTI'S L18 ORTHOGONAL CODING INFORMATION-EFFICIENT DESIGN, FACTOR LEVELS 

Xl X2 X3 - X4 - X5 - Xl X2 X3 X4 X5 
-1 -1 -1.225 -.707 -1.225 -.707 -1.225 -.707 -1 -1 -1 0 -1 
-1 -1 0.000 1.414 0.000 1.414 1.225 -.707 -1 -1 0 -1 0 
-1 -1 1.225 -.707 1.225 -.707 0.000 1.414 -1 -1 0 1 -1 
-1 1 -1.225 -.707 1.225 -.707 0.000 1.414 -1 -1 1 0 1 
-1 1 0.000 1.414 -1.225 -.707 -1.225 -.707 -1 -1 1 1 1 
-1 1 1.225 -.707 0.000 1.414 1.225 -.707 -1 1 -1 -1 0 

1 -1 -1.225 -.707 0.000 1.414 0.000 1.414 -1 1 -1 0 -1 
1 -1 -1.225 -.707 1.225 -.707 1.225 -.707 -1 1 0 -1 1 
1 -1 0.000 1.414 -1.225 -.707 0.000 1.414 -1 1 1 1 0 
1 -1 0.000 1.414 1.225 -.707 -1.225 -.707 1 -1 -1 -1 1 
1 -1 1.225 -.707 -1.225 -.707 1.225 -.707 1 -1 -1 1 0 
1 -1 1.225 -.707 0.000 1.414 -1.225 -.707 1 -1 0 0 0 
1 1 -1.225 -.707 -1.225 -.707 1.225 -.707 1 -1 1 -1 -1 
1 1 -1.225 -.707 0.000 1.414 -1.225 -.707 1 1 -1 1 1 
1 1 0.000 1.414 0.000 1.414 0.000 1.414 1 1 0 0 1 
1 1 0.000 1.414 1.225 -.707 1.225 -.707 1 1 0 1 -1 
1 1 1.225 -.707 -1.225 -.707 0.000 1.414 1 1 1 -1 -1 
1 1 1.225 -.707 1.225 -.707 -1.225 -.707 1 1 1 0 0 
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Table A9 
CONSUMER FOOD PRODUCT DESIGN CREATION CODE 

Construct the Design 

proc plan ordered; * Create full-factorial design; 
factors xl=4 x2=4 x3=2 x4=2 x5=3 x6=3 x7=2 x8=3 / noprint; 
output out=full; 
quit; 

proc optex data=full; * Create information-efficient design; 
* Last level will be N/A. Count brands. Exclude 0, 1, 5.; 
where	 (2 <= ((xl < 4) + (x2 < 4) + (x5 < 3) +
 

(x6 < 3) + (x8 < 3)) <= 4);
 

class xl-x8;
 
model xl-x8 x2*x3 x2*x4 x3*x4 x6*x7;
 
generate n=26 iter=200 method=m_federov;
 
examine information variance;
 
output out=subl;
 
quit;
 

Print the Design 

proc format; 
value fl 1 = '$1.29' 2 = '$1.69' 3 = '$2.09' 4 = 'N/A'; 
value f2 1 = '$1.39' 2 = '$1.89' 3 = '$2.39' 4 = 'N/A'; 
value f3 _ 1 = 'micro! 2 ::: 'stove'; 
value E5 1 = '$1.99' 2 = '$2.49' 3 = 'N/A'; 
value f6 1 = '$1.49' 2 = '$2.29' 3 = 'N/A'; 
value f8 _ 1 = '$1.99' 2 = '$2.39' 3 = 'N/A'; 
run; 

data sublf; 
length bl-bS $ 12; 
set subl; 
bl = put (xl, fl_.I; 
b2 = put (x2, f2_.1 ; 
if b2 ne 'N/A' then b2 = trim(b2) II' /' Ilput (x3, f3_.I; 
b3 = put(x5,fS_.); 
b4 = put(x6,f6_.I; 
if b4 ne 'N/A' then b4 = trim(b4111'/'llput(x7,f3_.I; 
b5 = put(x8,f8_.); 
label bl = 'Client Brand' 

b2 = 'Client Line Extension'
 
b3 = 'Regional Brand'
 
b4 = 'Private Label'
 
b5 = 'National Competitor';
 

run; 

proc sort; by x4 b:; run; 

proc print label; var b:; run; 
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